Calculates and plots the HPV prevalence for one or several prevention strategies.
plotPrevalence(..., current=NULL, labels=NULL)
Returns a list with HPV prevalence for each age group.
one or several microsimulated cohort corresponding to one or several microsimulated cohorts.
real HPV prevalence in the population of interest.
labels to be used in the plot.
David Moriña (Universitat de Barcelona), Pedro Puig (Universitat Autònoma de Barcelona) and Mireia Diaz (Institut Català d'Oncologia)
Georgalis L, de Sanjosé S, Esnaola M, Bosch F X, Diaz M. Present and future of cervical cancer prevention in Spain: a cost-effectiveness analysis. European Journal of Cancer Prevention 2016;25(5):430-439.
Moriña D, de Sanjosé S, Diaz M. Impact of model calibration on cost-effectiveness analysis of cervical cancer prevention 2017;7.
mSimCC-package
, microsim
, costs
, le
,
bCohort
, plotCIN2Incidence
, plotCIN1Incidence
,
plotCIN3Incidence
, plotMortality
, plotIncidence
,
qalys
, yls
data(probs)
nsim <- 3
p.men <- 0
size <- 20
min.age <- 10
max.age <- 84
#### Natural history
hn <- microsim(seed=1234, nsim, probs, abs_states=c(10, 11), sympt_states=c(5, 6, 7, 8),
prob_sympt=c(0.11, 0.23, 0.66, 0.9),
size, p.men, min.age, max.age,
utilityCoefs = c(1, 1, 0.987, 0.87, 0.87, 0.76, 0.67, 0.67, 0.67, 0.938, 0, 0),
costCoefs.md = c(0, 0, 254.1, 1495.9, 1495.9, 5546.8, 12426.4, 23123.4,
34016.6, 0, 0, 0),
costCoefs.nmd = c(0, 0, 81.4, 194.1, 194.1, 219.1, 219.1, 219.1, 219.1, 0, 0, 0),
costCoefs.i = c(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0), disc=3,
treatProbs=c(0,0,1,1,1,0.9894,0.9422,0.8262,0.5507,0,0,0),
nCores=1) ### individual level
hn_c <- bCohort(hn)
plotPrevalence(hn_c) ### Aggregated level
Run the code above in your browser using DataLab