Learn R Programming

mSimCC (version 0.0.3)

yls: Aggregate data from a microsimulated cohort

Description

Aggregates data from a microsimulated cohort.

Usage

yls(scenario1, scenario2, disc = FALSE)

Value

Years of life saved due to strategy scenario1 compared to scenario2.

Arguments

scenario1

microsimulated cohort.

scenario2

microsimulated cohort.

disc

discount rate to be applied. Defaults to FALSE (undiscounted).

Author

David Moriña (Universitat de Barcelona), Pedro Puig (Universitat Autònoma de Barcelona) and Mireia Diaz (Institut Català d'Oncologia)

References

Georgalis L, de Sanjosé S, Esnaola M, Bosch F X, Diaz M. Present and future of cervical cancer prevention in Spain: a cost-effectiveness analysis. European Journal of Cancer Prevention 2016;25(5):430-439.

Moriña D, de Sanjosé S, Diaz M. Impact of model calibration on cost-effectiveness analysis of cervical cancer prevention 2017;7.

See Also

mSimCC-package, microsim, costs, le, plotCIN1Incidence, plotCIN2Incidence, plotCIN3Incidence, plotIncidence, plotMortality, plotPrevalence, qalys, bCohort

Examples

Run this code
data(probs)
nsim       <- 3
p.men      <- 0
size       <- 20
min.age    <- 10
max.age    <- 84

#### Natural history
hn <- microsim(seed=1234, nsim, probs, abs_states=c(10, 11), sympt_states=c(5, 6, 7, 8), 
               prob_sympt=c(0.11, 0.23, 0.66, 0.9), 
                size, p.men, min.age, max.age, 
                utilityCoefs = c(1, 1, 0.987, 0.87, 0.87, 0.76, 0.67, 0.67, 0.67, 0.938, 0, 0),
                costCoefs.md = c(0, 0, 254.1, 1495.9, 1495.9, 5546.8, 12426.4, 23123.4, 
                                 34016.6, 0, 0, 0),
                costCoefs.nmd = c(0, 0, 81.4, 194.1, 194.1, 219.1, 219.1, 219.1, 219.1, 0, 0, 0),
                costCoefs.i = c(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0), disc=3, 
                treatProbs=c(0,0,1,1,1,0.9894,0.9422,0.8262,0.5507,0,0,0),
                nCores=1) 
                
vacc12 <- microsim(seed=1234, nsim, probs, abs_states=c(10, 11), sympt_states=c(5, 6, 7, 8), 
                   prob_sympt=c(0.11, 0.23, 0.66, 0.9),
                   size, p.men, min.age, max.age, 
                   utilityCoefs = c(1, 1, 0.987, 0.87, 0.87, 0.76, 0.67, 0.67, 0.67, 0.938, 0, 0),
                   costCoefs.md = c(0, 0, 254.1, 1495.9, 1495.9, 5546.8, 12426.4, 23123.4, 
                                    34016.6, 0, 0, 0),
                   costCoefs.nmd = c(0, 0, 81.4, 194.1, 194.1, 219.1, 219.1, 219.1, 219.1, 
                                     0, 0, 0),
                   costCoefs.i = c(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0), disc=3, vacc=TRUE, 
                   vacc.age=12, vacc.prop=1, ndoses=3,
                   vacc.cov=0.828, vacc.eff=1, vacc.type="biv", vaccprice.md=33.6, 
                   vaccprice.nmd=0, vaccprice.i=0,
                   treatProbs=c(0,0,1,1,1,0.9894,0.9422,0.8262,0.5507,0,0,0), nCores=1) 
yls(hn, vacc12)

Run the code above in your browser using DataLab