Estimate of Hellinger Correlation between two random variables and Bootstrap
mable.hellcorr(
x,
unif.mar = FALSE,
pseudo.obs = c("empirical", "mable"),
M0 = c(1, 1),
M = c(30, 30),
search = TRUE,
mar.deg = TRUE,
high.dim = FALSE,
interval = cbind(0:1, 0:1),
B = 200L,
conf.level = 0.95,
integral = TRUE,
controls = mable.ctrl(sig.level = 0.05),
progress = FALSE
)hellcorr(
x,
unif.mar = FALSE,
pseudo.obs = c("empirical", "mable"),
M0 = c(1, 1),
M = c(30, 30),
search = TRUE,
mar.deg = TRUE,
high.dim = FALSE,
interval = cbind(0:1, 0:1),
B = 200L,
conf.level = 0.95,
integral = TRUE,
controls = mable.ctrl(sig.level = 0.05),
progress = FALSE
)
eta
Hellinger correlation
CI.eta
Bootstrap confidence interval for
Hellinger correlation if B
>0.
an n x 2
data matrix of observations of the two random variables
logical, whether all the marginals distributions are uniform or not.
If not the pseudo observations will be created using empirical
or mable
marginal distributions.
"empirical"
: use empirical distribution to form pseudo,
observations, or "mable"
: use mable of marginal cdfs to form pseudo
observations
a nonnegative integer or a vector of d
nonnegative integers specify
starting candidate degrees for searching optimal degrees.
a positive integer or a vector of d
positive integers specify
the maximum candidate or the given model degrees for the joint density.
logical, whether to search optimal degrees between M0
and M
or not but use M
as the given model degrees for the joint density.
logical, if TRUE (default), the optimal degrees are selected based on marginal data, otherwise, the optimal degrees are chosen by the method of change-point. See details.
logical, data are high dimensional/large sample or not if TRUE, run a slower version procedure which requires less memory
a 2 by 2 matrix, columns are the marginal supports
the number of bootstrap samples and number of Monte Carlo runs for
estimating p.value
of the test for Hellinger correlation = 0
if test=TRUE
.
confidence level
logical, using "integrate()" or not (Riemann sum)
Object of class mable.ctrl()
specifying iteration limit
and the convergence criterion eps
. Default is mable.ctrl
. See Details.
if TRUE a text progressbar is displayed
Zhong Guan <zguan@iu.edu>
This function calls mable.copula()
for estimation of the copula density.
Guan, Z., Nonparametric Maximum Likelihood Estimation of Copula
mable
, mable.mvar
, mable.copula