cia of 2 datasets where
covariance between groups or classes of cases, rather than individual cases are maximised.
bet.coinertia(df1, df2, fac1, fac2, cia.nf = 2, type = "nsc", ...)matrix, data.frame,
ExpressionSet or
marrayRaw-class.
If the input is gene expression data in a matrix or data.frame. The
rows and columns are expected to contain the variables (genes) and cases (array samples)
respectively.
matrix, data.frame,
ExpressionSet or
marrayRaw-class.
If the input is gene expression data in a matrix or data.frame. The
rows and columns are expected to contain the variables (genes) and cases (array samples)
respectively.factor or vector which describes the classes in df1.factor or vector which describes the classes in df2.bet.cia of length 5dudi. See
coinertiadudi,
dudi.pca or
dudi.nscdudi,
dudi.pca or
dudi.nscdudi,
bga or bcadudi,
bga or bca.coinertia, cia.### NEED TO DO
if (require(ade4, quiet = TRUE)) {}
Run the code above in your browser using DataLab