Learn R Programming

maestro (version 0.6.1)

MaestroPipelineList: Class for a list of MaestroPipelines A MaestroPipelineList is created when there are multiple maestro pipelines in a single script

Description

Class for a list of MaestroPipelines A MaestroPipelineList is created when there are multiple maestro pipelines in a single script

Class for a list of MaestroPipelines A MaestroPipelineList is created when there are multiple maestro pipelines in a single script

Arguments

Public fields

MaestroPipelines

list of pipelines

n_pipelines

number of pipelines in the list

Methods


Method new()

Create a MaestroPipelineList object

Usage

MaestroPipelineList$new(MaestroPipelines = list(), network = NULL)

Arguments

MaestroPipelines

list of MaestroPipelines

network

initialize a network

Returns

MaestroPipelineList


Method print()

Print the MaestroPipelineList

Usage

MaestroPipelineList$print()

Returns

print


Method add_pipelines()

Add pipelines to the list

Usage

MaestroPipelineList$add_pipelines(MaestroPipelines = NULL)

Arguments

MaestroPipelines

list of MaestroPipelines

Returns

invisible


Method get_pipe_names()

Get names of the pipelines in the list arranged by priority

Usage

MaestroPipelineList$get_pipe_names()

Returns

character


Method get_pipe_by_name()

Get a MaestroPipeline by its name

Usage

MaestroPipelineList$get_pipe_by_name(pipe_name)

Arguments

pipe_name

name of the pipeline

Returns

MaestroPipeline


Method get_priorities()

Get priorities

Usage

MaestroPipelineList$get_priorities()

Returns

numeric


Method get_schedule()

Get the schedule as a data.frame

Usage

MaestroPipelineList$get_schedule()

Returns

data.frame


Method get_timely_pipelines()

Get a new MaestroPipelineList containing only those pipelines scheduled to run

Usage

MaestroPipelineList$get_timely_pipelines(...)

Arguments

...

arguments passed to self$check_timeliness

Returns

MaestroPipelineList


Method get_primary_pipes()

Get pipelines that are primary (i.e., don't have an inputting pipeline)

Usage

MaestroPipelineList$get_primary_pipes()

Returns

list of MaestroPipelines


Method check_timeliness()

Check whether pipelines in the list are scheduled to run based on orchestrator frequency and current time

Usage

MaestroPipelineList$check_timeliness(...)

Arguments

...

arguments passed to self$check_timeliness

Returns

logical


Method get_status()

Get status of the pipelines as a data.frame

Usage

MaestroPipelineList$get_status()

Returns

data.frame


Method get_errors()

Get list of errors from the pipelines

Usage

MaestroPipelineList$get_errors()

Returns

list


Method get_warnings()

Get list of warnings from the pipelines

Usage

MaestroPipelineList$get_warnings()

Returns

list


Method get_messages()

Get list of messages from the pipelines

Usage

MaestroPipelineList$get_messages()

Returns

list


Method get_artifacts()

Get artifacts (return values) from the pipelines

Usage

MaestroPipelineList$get_artifacts()

Returns

list


Method get_run_sequences()

Get run sequences from the pipelines

Usage

MaestroPipelineList$get_run_sequences()

Returns

list


Method get_flags()

Get the flags of the pipelines as a named list

Usage

MaestroPipelineList$get_flags()

Returns

list


Method get_network()

Get the network structure as a edge list

Usage

MaestroPipelineList$get_network()

Returns

data.frame


Method validate_network()

Validates whether all inputs and outputs exist and that the network is a valid DAG

Usage

MaestroPipelineList$validate_network()

Returns

warning or invisible


Method run()

Runs all the pipelines in the list

Usage

MaestroPipelineList$run(..., cores = 1L, pipes_to_run = NULL)

Arguments

...

arguments passed to MaestroPipeline$run

cores

if using multicore number of cores to run in (uses furrr)

pipes_to_run

an optional vector of pipe names to run. If NULL defaults to all primary pipelines

Returns

invisible


Method clone()

The objects of this class are cloneable with this method.

Usage

MaestroPipelineList$clone(deep = FALSE)

Arguments

deep

Whether to make a deep clone.