Learn R Programming

maic (version 0.1.4)

reportCovariates: Calculate the rebalanced covariates

Description

This function calculates the raw, target and achieved covariates given a set of weights. Note that for mean values, bootstrapped standard errors are used and so downstream values (such as p-values for difference) may differ from run to run if the random number stream is not consistent

Usage

reportCovariates(
  index,
  target,
  dictionary,
  matching.variables,
  weights,
  tidy = TRUE,
  var.method = c("ML", "unbiased")
)

Arguments

index

A matrix or data.frame containing patient-level data

target

A list containing target summary data

dictionary

A data frame containing the columns "match.id", "target.variable", "index.variable" and "match.type"

matching.variables

A character vector indicating the match.id to use

weights

A numeric vector with weights corresponding to the index data rows

tidy

A boolean - return as a data frame (otherwise list)

var.method

Estimator type passed through to wtd.var. Defaults to ML, as Bessel's correction not used in weights generation.

Value

An object of class maic.covariates

Examples

Run this code
# NOT RUN {
target <- c("Air.Flow" = 60,
           "Water.Temp" = 21,
           "Prop.Acid.Conc.LT.90" = 0.7,
           "min.air.flow" = 55)

stackloss$match.conc.lt.90 <- 
  ifelse(stackloss$Acid.Conc. < 90, 1, 0)

dict <- data.frame(
  "match.id" = 
    c("airflow", "watertemp", 
      "acidconc", "min.airflow"),
  "target.variable" = 
    c("Air.Flow", "Water.Temp",
      "Prop.Acid.Conc.LT.90", "min.air.flow"),
  "index.variable" = 
    c("Air.Flow", "Water.Temp",
      "match.conc.lt.90", "Air.Flow"),
  "match.type" = 
    c("mean", "mean", "proportion", "min"),
  stringsAsFactors = FALSE)

ipmat <- createMAICInput(
  index = stackloss,
  target = target,
  dictionary = dict,
  matching.variables = 
    c("airflow", "watertemp", 
      "acidconc", "min.airflow"))

wts <- maicWeight(ipmat)

rcv <- reportCovariates(
  stackloss, target, dict, 
  matching.variables = 
    c("airflow", "watertemp", 
      "acidconc", "min.airflow"),
  wts)
# }

Run the code above in your browser using DataLab