maigesRaw
using the functions
normLoc
, normOLIN
,
normRepLoess
, normScaleLimma
and/or
normScaleMarray
to do the normalisation.Here, the M=log(R/G) value of intensity ratio was redefined as W=log(Test/Ref), where Test and Ref are the test and reference samples.
W
:A
:SD
:IC1
:IC2
:BadSpots
:UseSpots
:GeneGrps
:Paths
:graphNEL
objects
specifying gene regulatory networks (or pathways). The first
object in this list is a char string giving the gene label used to
match the genes.Layout
:gridR
) and
columns (gridC
) of grids, the number of rows (spotR
)
and columns (spotC
) of spots inside each grid and the total
number of spots.Glabels
:Slabels
:Notes
:Date
:V.info
:signature(x = 'maiges')
: subsetting operator for
spots on the array or arrays in the batch, ensures that all slots
are subset properly.signature(x = 'maiges')
: boxplot method for
maiges
class. Display boxplots of the slides and
print tip groups using package marray or boxplots of
one gene previously defined.signature(x = 'maiges', value = 'numeric')
: get
the dimensions of the object, numeric vector of length two.signature(x = 'maiges')
: image method for
maiges
class. Display colour representation of
the slides using package marray.signature(x = 'maiges')
: plot method for
maiges
class. Display 'MA' plots.signature(x = 'maiges')
: print method for
maiges
class.signature(x = 'maiges')
: show method for
maiges
class.signature(x = 'maiges')
: summary method for
maiges
class.maigesRaw
class
using the normalisation functions normLoc
, normOLIN
,
normRepLoess
, normScaleLimma
and
normScaleMarray
. From this class
of objects it is possible to do any type of analysis defined by
several functions in this package. Also, it is possible to summarise
spots (or samples) information using the function
summarizeReplicates
.
normLoc
, normOLIN
,
normRepLoess
, normScaleLimma
,
normScaleMarray
and summarizeReplicates
.