Classical multidimensional scaling aims at finding low-dimensional structure by preserving pairwise distances of data.
cmds(data, ndim = 2)
a named list containing
an
discrepancy between embedded and origianl data as a measure of error.
an
an integer-valued target dimension.
torgerson_multidimensional_1952maotai
## use simple example of iris dataset
data(iris)
idata = as.matrix(iris[,1:4])
icol = as.factor(iris[,5]) # class information
## run Classical MDS
iris.cmds = cmds(idata, ndim=2)
## visualize
opar <- par(no.readonly=TRUE)
plot(iris.cmds$embed, col=icol,
main=paste0("STRESS=",round(iris.cmds$stress,4)))
par(opar)
Run the code above in your browser using DataLab