Learn R Programming

mapfit (version 1.0.0)

GPHClass: General phase-type distribution

Description

General phase-type distribution

General phase-type distribution

Arguments

Methods


Method alpha()

Get alpha

Usage

GPHClass$alpha()

Returns

A vector of alpha


Method Q()

Get Q

Usage

GPHClass$Q()

Returns

A matrix of Q


Method xi()

Get xi

Usage

GPHClass$xi()

Returns

A vector of xi


Method new()

Create a GPH

Usage

GPHClass$new(alpha, Q, xi)

Arguments

alpha

A vector of initial probability

Q

An infinitesimal generator

xi

An exit rate vector

Returns

An instance of GPH


Method copy()

copy

Usage

GPHClass$copy()

Returns

A new instance


Method size()

The number of phases

Usage

GPHClass$size()

Returns

The number of phases


Method df()

Degrees of freedom

Usage

GPHClass$df()

Returns

The degrees of freedom


Method moment()

Moments of GPH

Usage

GPHClass$moment(k, ...)

Arguments

k

A value to indicate the degrees of moments. k-th moment

...

Others

Returns

A vector of moments from 1st to k-th moments


Method print()

Print

Usage

GPHClass$print(...)

Arguments

...

Others


Method pdf()

PDF

Usage

GPHClass$pdf(x, poisson.eps = 1e-08, ufactor = 1.01, ...)

Arguments

x

A vector of points

poisson.eps

A value of tolerance error for uniformization

ufactor

A value of uniformization factor

...

Others

Returns

A vector of densities.


Method cdf()

CDF

Usage

GPHClass$cdf(x, poisson.eps = 1e-08, ufactor = 1.01, ...)

Arguments

x

A vector of points

poisson.eps

A value of tolerance error for uniformization

ufactor

A value of uniformization factor

...

Others

Returns

A vector of probabilities


Method ccdf()

Complementary CDF

Usage

GPHClass$ccdf(x, poisson.eps = 1e-08, ufactor = 1.01, ...)

Arguments

x

A vector of points

poisson.eps

A value of tolerance error for uniformization

ufactor

A value of uniformization factor

...

Others

Returns

A vector of probabilities


Method sample()

Make a sample

Usage

GPHClass$sample(...)

Arguments

...

Others

Returns

A sample of GPH


Method emfit()

Run EM

Usage

GPHClass$emfit(data, options, ...)

Arguments

data

A dataframe

options

A list of options

...

Others


Method init()

Initialize with data

Usage

GPHClass$init(data, ...)

Arguments

data

A dataframe

...

Others

options

A list of options


Method clone()

The objects of this class are cloneable with this method.

Usage

GPHClass$clone(deep = FALSE)

Arguments

deep

Whether to make a deep clone.

Details

A continuous distribution dominated by a continuous-time Markov chain. A random time is given by an absorbing time.