sex.mapping <- mapping(c("Female", "F", "Male", "M"), c(0, 0, 1, 1))
sex.mapping(c("Female", "Female", "Male", "F"))
sex.mapping <- mapping(0:1, c("Female", "Male"), na="Unknown")
sex.mapping(c(0, 1, NA, 0, 1, 1, 0))
inverse(sex.mapping)(c("Female", "Male", "Unknown"))
from <- c(0, 1, NA)
to <- c(NA, "Male", "Female")
x <- c(0, 1, NA, 0, 1, 1, 0)
sex.mapping <- mapping(c(0, 1, NA), c(NA, "Male", "Female"))
sex.mapping
sex.mapping(c(0, 1, NA, 0, 1, 1, 0))
inverse(sex.mapping)
inverse(sex.mapping)(c("Female", "Male", NA))
race.mapping <- mapping(c(
      "1"="WHITE",
      "2"="BLACK OR AFRICAN AMERICAN",
      "5"="AMERICAN INDIAN OR ALASKA NATIVE"))
race.mapping(1:5)
# Use of `unmapped`
dv.mapping <- mapping("BQL", -99, unmapped=as.numeric)
dv.mapping(c("3.1", "BQL", "2.7", "100"))
# Map certain elements and preserves the rest
x <- LETTERS[1:5]
pmapping("B", "Z")(x)
mapping("B", "Z", unmapped=I)(x)  # Same
Run the code above in your browser using DataLab