
Last chance! 50% off unlimited learning
Sale ends in
ggplot2 mapping
map_ggplot(
x,
map = "world",
point_color = "#86161f",
color = NULL,
size = 3,
lon = "longitude",
lat = "latitude",
name = NULL,
...
)
The data. An object of class occdat
, occdatind
,
gbif
, gbif_data
, SpatialPoints
,
SpatialPointsDataFrame
, or data.frame
. The package
spocc needed for
the first two, and rgbif needed for the third. When data.frame
input, any number of columns allowed, but with at least the following:
name (the taxonomic name), latitude (in dec. deg.), longitude (in dec. deg.)
(character) One of world, world2, state, usa, county, france, italy, or nz
Default color of your points. Deprecated, use
color
Default color of your points.
point size, Default: 3
(character) Longitude and latitude variable names. Ignored
unless data.frame
input to x
parameter. We attempt to guess,
but if nothing close, we stop. Default: longitude
and
latitude
(character) the column name that contains the name to use in
creating the map. If left NULL
we look for a "name" column.
default: NULL
Ignored
A ggplot2 map, of class gg/ggplot
# NOT RUN {
# map spocc output, here using a built in object
data(occdat_eg1)
map_ggplot(occdat_eg1)
# map rgbif output, here using a built in object
data(gbif_eg1)
map_ggplot(gbif_eg1)
# }
# NOT RUN {
## spocc
library("spocc")
ddat <- occ(query = 'Lynx rufus californicus', from = 'gbif', limit=100)
map_ggplot(ddat)
map_ggplot(ddat$gbif)
map_ggplot(ddat$gbif, "usa")
map_ggplot(ddat, "county")
### usage of occ2sp()
#### SpatialPoints
spdat <- occ2sp(ddat)
map_ggplot(spdat)
#### SpatialPointsDataFrame
spdatdf <- as(spdat, "SpatialPointsDataFrame")
map_ggplot(spdatdf)
## rgbif
if (requireNamespace("rgbif")) {
library("rgbif")
library("ggplot2")
### occ_search() output
res <- occ_search(scientificName = "Puma concolor", limit = 100)
map_ggplot(res)
### occ_data() output
res <- occ_data(scientificName = "Puma concolor", limit = 100)
map_ggplot(res)
#### many taxa
res <- occ_data(scientificName = c("Puma concolor", "Quercus lobata"),
limit = 30)
map_ggplot(res)
### add a convex hull
hull(map_ggplot(res))
}
## data.frame
df <- data.frame(name = c('Poa annua', 'Puma concolor', 'Foo bar'),
longitude = c(-120, -121, -121),
latitude = c(41, 42, 45), stringsAsFactors = FALSE)
map_ggplot(df)
# many species, each gets a different color
library("spocc")
spp <- c('Danaus plexippus', 'Accipiter striatus', 'Pinus contorta')
dat <- occ(spp, from = 'gbif', limit = 30, has_coords = TRUE)
map_ggplot(dat, color = c('#976AAE', '#6B944D', '#BD5945'))
# }
Run the code above in your browser using DataLab