gas_satconc(species = "O2")
Temp <- seq(from = 0, to = 30, by = 0.1)
Sal <- seq(from = 0, to = 35, by = 0.1)
mf <- par(mfrow = c(1,2))
species <- c("N2","CO2","O2","CH4","N2O")
gsat <-gas_satconc(t=Temp, species=species)
matplot(Temp,gsat,type="l",xlab="temperature",log="y", lty=1,
ylab="mmol/m3",main="Saturated conc (S=35)", lwd=2)
legend("right",col=1:5,lwd=2,legend=species)
gsat <-gas_satconc(S=Sal,species=species)
matplot(Sal,gsat,type="l",xlab="salinity",log="y", lty=1,
ylab="mmol/m3",main="Saturated conc (T=20)", lwd=2)
legend("right",col=1:5,lwd=2,legend=species)
par(mfrow = mf)
## generate table 3.2.4 from Sarmiento and Gruber
Temp <- seq (0, 30, by = 5)
## saturated concentrations in mmol/m3, at 1 atm.
A <- data.frame(cbind( t = Temp,
N2 = gas_satconc(t = Temp, species = "N2"),
O2 = gas_satconc(t = Temp, species = "O2"),
CO2 = gas_satconc(t = Temp, species = "CO2"),
Ar = gas_satconc(t = Temp, species = "Ar")))
format(A,digits = 4)
## table values
## at 0 dg C: 635.6 359.1 23.37 17.44
## at 20 dg C: 425.7 230.5 11.61 11.29
## note the deviations for CO2 (20dg)!
## saturated concentrations in micromol/m3, at 1 atm.
AA <- data.frame(cbind( t = Temp,
N2O = gas_satconc(t = Temp, species = "N2O")*1000,
Ne = gas_satconc(t = Temp, species = "Ne" )*1000,
Kr = gas_satconc(t = Temp, species = "Kr" )*1000,
CH4 = gas_satconc(t = Temp, species = "CH4")*1000,
He = gas_satconc(t = Temp, species = "He" )*1000))
format(AA, digits = 4)
## table values
## at 0 dgC: 14.84 8.11 4.33 3.44 1.81
## at 20 dgC: 7.16 6.94 2.50 2.12 1.70
## Note: different for N2O
Run the code above in your browser using DataLab