Learn R Programming

marginaleffects (version 0.1.0)

plot_cap: Conditional adjusted predictions plot

Description

This function plots the adjusted predictions of the outcome (y-axis) against values of one or more predictors.

Usage

plot_cap(model, condition, conf.int = TRUE, conf.level = 0.95, draw = TRUE)

Arguments

model

Model object

condition

String or vector of two strings. The first is a variable name to be displayed on the x-axis. The second is a variable whose values will be displayed in different colors.

conf.int

Logical indicating whether or not to include a confidence interval.

conf.level

The confidence level to use for the confidence interval if conf.int=TRUE. Must be strictly greater than 0 and less than 1. Defaults to 0.95, which corresponds to a 95 percent confidence interval.

draw

TRUE returns a ggplot2 plot. FALSE returns a data.frame of the underlying data.

Value

A ggplot2 object

Examples

Run this code
# NOT RUN {
mod <- lm(mpg ~ hp + wt, data = mtcars)
plot_cap(mod, condition = "wt")

mod <- lm(mpg ~ hp * wt * am, data = mtcars)
plot_cap(mod, condition = c("hp", "wt"))

# }

Run the code above in your browser using DataLab