Get predicted values from a model object (internal function)
get_predict(model, newdata, type, ...)# S3 method for default
get_predict(
model,
newdata = insight::get_data(model),
type = "response",
conf.level = NULL,
...
)
# S3 method for polr
get_predict(
model,
newdata = insight::get_data(model),
type = "probs",
conf.level = NULL,
...
)
# S3 method for glmmPQL
get_predict(
model,
newdata = insight::get_data(model),
type = "response",
conf.level = NULL,
...
)
# S3 method for glimML
get_predict(model, newdata = insight::get_data(model), type = "response", ...)
# S3 method for multinom
get_predict(model, newdata = insight::get_data(model), type = "probs", ...)
# S3 method for brmultinom
get_predict(model, newdata = insight::get_data(model), type = "probs", ...)
# S3 method for brmsfit
get_predict(model, newdata = insight::get_data(model), type = "response", ...)
# S3 method for crch
get_predict(model, newdata = NULL, type = "location", ...)
# S3 method for fixest
get_predict(
model,
newdata = insight::get_data(model),
type = "response",
conf.level = NULL,
...
)
# S3 method for merMod
get_predict(
model,
newdata = insight::get_data(model),
type = "response",
conf.level = NULL,
...
)
# S3 method for lmerModLmerTest
get_predict(
model,
newdata = insight::get_data(model),
type = "response",
conf.level = NULL,
...
)
# S3 method for lmerMod
get_predict(
model,
newdata = insight::get_data(model),
type = "response",
conf.level = NULL,
...
)
# S3 method for mblogit
get_predict(model, newdata = insight::get_data(model), type = "probs", ...)
# S3 method for clm
get_predict(model, newdata = insight::get_data(model), type = "response", ...)
# S3 method for rq
get_predict(
model,
newdata = insight::get_data(model),
type = NULL,
conf.level = NULL,
...
)
# S3 method for rlmerMod
get_predict(model, newdata = insight::get_data(model), ...)
# S3 method for stanreg
get_predict(model, newdata = insight::get_data(model), type = "response", ...)
# S3 method for coxph
get_predict(
model,
newdata = insight::get_data(model),
type = "lp",
conf.level = NULL,
...
)
Model object
A dataset over which to compute marginal effects. NULL
uses
the original data used to fit the model.
Type(s) of prediction as string or character vector. This can differ based on the model type, but will typically be a string such as: "response", "link", "probs", or "zero".
Additional arguments are passed to the predict()
method used to
compute adjusted predictions. These arguments are particularly useful for
mixed-effects or bayesian models (see the online vignettes on the
marginaleffects
website). Available arguments can vary from model to
model, depending on the range of supported arguments by each modeling
package. See the "Model-Specific Arguments" section of the
?marginaleffects
document for a non-exhaustive list of available
arguments.
A vector of predicted values of length equal to the number of rows
in newdata
. For models with multi-level outcomes (e.g., multinomial
logit), this function returns a matrix of predicted values with column names
equal to each of the levels/groups.