# \donttest{
library(spatstat.geom)
library(spatstat.random)
library(spatstat.explore)
library(spatstat.linnet)
library(ggplot2)
#######################################
## 1. Planar point patterns (ppp)
#######################################
# Global mark correlation (real-valued marks)
X_ppp <- rpoispp(200)
marks(X_ppp) <- data.frame(m1 = runif(npoints(X_ppp), 1, 10))
tc_ppp1 <- testmc(X_ppp,
fun = mcorr.ppp,
fun_args = list(ftype = "stoyan", method = "density"))
plot(tc_ppp1) +
labs(
title = "Global mark correlation (ppp)",
x = expression(r),
y = "Observed / Envelope"
) +
theme_minimal() +
theme(
plot.title = element_text(size = 14, face = "bold"),
axis.title = element_text(size = 12),
axis.text = element_text(size = 10),
legend.title = element_text(size = 11),
legend.text = element_text(size = 10)
)
# Local mark correlation (real-valued marks)
X_ppp2 <- rpoispp(200)
marks(X_ppp2) <- data.frame(m1 = runif(npoints(X_ppp2), 1, 10))
tc_ppp2 <- testmc(X_ppp2,
fun = lmcorr.ppp,
fun_args = list(ftype = "stoyan", method = "density"))
plot(tc_ppp2[[1]]) +
labs(
title = "Local mark correlation (ppp)",
x = expression(r),
y = "Local correlation"
) +
theme_classic() +
theme(
plot.title = element_text(size = 13, face = "bold"),
axis.title = element_text(size = 12),
axis.text = element_text(size = 10),
legend.title = element_text(size = 11),
legend.text = element_text(size = 10),
legend.position = "right"
)
plot(tc_ppp2) +
labs(
title = "Effective range",
x = expression(r),
y = "Id of significant points"
) +
theme_classic() +
theme(
plot.title = element_text(size = 23, face = "bold"),
axis.title = element_text(size = 12),
axis.text = element_text(size = 20),
legend.title = element_text(size = 21),
legend.text = element_text(size = 30),
legend.position = "right"
)
#######################################
## 2. Linear network point patterns (lpp)
#######################################
X_lpp <- rpoislpp(40, simplenet)
marks(X_lpp) <- data.frame(m1 = runif(npoints(X_lpp), 1, 10))
tc_lpp1 <- testmc(X_lpp,
fun = mcorr.lpp,
fun_args = list(ftype = "stoyan", method = "density"))
plot(tc_lpp1) +
labs(
title = "Global mark correlation (lpp)",
x = expression(r),
y = "Observed / Envelope"
) +
theme_bw() +
theme(
plot.title = element_text(size = 14, face = "bold"),
axis.title = element_text(size = 12),
axis.text = element_text(size = 10),
legend.title = element_text(size = 11),
legend.text = element_text(size = 10),
legend.position = "top"
)
# Local functional mark correlation (function-valued marks)
marks(X_lpp) <- data.frame(
t1 = runif(npoints(X_lpp), 1, 10),
t2 = runif(npoints(X_lpp), 1, 10)
)
tc_lpp2 <- testmc(X_lpp,
fun = lfmcorr,
fun_args = list(ftype = "stoyan", method = "density"))
plot(tc_lpp2[[1]]) +
labs(
title = "Local functional mark correlation (lpp)",
x = expression(r),
y = "Local correlation"
) +
theme_light() +
theme(
plot.title = element_text(size = 13, face = "bold"),
axis.title = element_text(size = 12),
axis.text = element_text(size = 10),
legend.title = element_text(size = 11),
legend.text = element_text(size = 10),
legend.position = "bottom"
)
# }
Run the code above in your browser using DataLab