The function to return the first, second derivate and the information score matrix. There are the central finite-difference and forward finite-difference will be used.
Usage
deriva(b, funcpa)
Arguments
b
value of parameters to be optimized over.
funcpa
function to be minimized (or maximized), with argument the vector of parameters over which minimization is
to take place. It should return a scalar result.
Value
v
the information score matrix.
rl
log-likelihood or likelihood of the model.
References
Donald W. Marquardt An algorithm for Least-Squares Estimation of Nonlinear Parameters. Journal of the Society for Industrial and Applied Mathematics, Vol. 11, No. 2. (Jun, 1963), pp. 431-441.