Learn R Programming

mas (version 0.4)

mas-package: tools:::Rd_package_title("mas")

Description

tools:::Rd_package_description("mas")

Arguments

Author

tools:::Rd_package_author("mas") Maintainer: tools:::Rd_package_maintainer("mas")

Details

The DESCRIPTION file: tools:::Rd_package_DESCRIPTION("mas") tools:::Rd_package_indices("mas")

References

Wei, J. and Xu, S., 2016. A random-model approach to QTL mapping in multiparent advanced generation intercross (MAGIC) populations. Genetics, 202(2), pp.471-486.

Xavier, A. and Habier, D., 2022. A new approach fits multivariate genomic prediction models efficiently. Genetics Selection Evolution, 54(1), pp.1-15.

Xavier, A. et al. 2025. A new approach fits multivariate genomic prediction models efficiently. Genetics, Volume 229, Issue 4, April 2025, iyae179.

Examples

Run this code

# load the toy dataset
data( soy ) 
Z = Z[,seq(1,ncol(Z),4)]

# run gwas
fit1 = gwas(y, Z, pop) 
# adjust variances
fit2 = CorrectBeavis( fit1 ) 

# Compare before and after correction
plot( fit1, h2=TRUE, col=8, pch=20) # display QTL h2
plot( fit2, h2=TRUE, add=TRUE, pch=20, type='o') # adjusted QTL h2
legend('topleft',pch=16,col=c(8,1),c('Before correction','After Beavis correction'))


Run the code above in your browser using DataLab