powered by
Compute posterior matrices for fitted mash object on new data
mash_compute_posterior_matrices( g, data, pi_thresh = 1e-10, algorithm.version = c("Rcpp", "R"), A = NULL, output_posterior_cov = FALSE, posterior_samples = 0, seed = 123 )
A list of posterior matrices
a mash object or the fitted_g from a mash object.
a set of data on which to compute the posterior matrices
threshold below which mixture components are ignored in computing posterior summaries (to speed calculations by ignoring negligible components)
Indicates whether to use R or Rcpp version
the linear transformation matrix, Q x R matrix. This is used to compute the posterior for Ab.
whether or not to output posterior covariance matrices for all effects
the number of samples to be drawn from the posterior distribution of each effect.
a random number seed to use when sampling from the posteriors. It is used when posterior_samples > 0.
posterior_samples > 0
simdata = simple_sims(50,5,1) data = mash_set_data(simdata$Bhat, simdata$Shat) m = mash(data, cov_canonical(data)) mash_compute_posterior_matrices(m,data)
Run the code above in your browser using DataLab