# NOT RUN {
r1.sdm <- raster::raster(raster::extent(c(-72, -64, 41, 50)), res = c(0.008333333, 0.008333333))
raster::values(r1.sdm) <- (1:raster::ncell(r1.sdm))^2
r2.sdm <- raster::raster(raster::extent(c(-72, -64, 41, 50)), res = c(0.008333333, 0.008333333))
raster::values(r2.sdm) <- (raster::ncell(r2.sdm):1)^2
r3.sdm <- raster::raster(raster::extent(c(-72, -64, 41, 50)), res = c(0.008333333, 0.008333333))
r3.sdm [1] <- 10
r3.sdm <- raster::distance(r3.sdm)
sp1.xy <- data.frame(dismo::randomPoints(r1.sdm, 15, prob = TRUE))
colnames(sp1.xy) <- c("longitude", "latitude")
sp2.xy <- data.frame(dismo::randomPoints(r2.sdm, 15, prob = TRUE))
colnames(sp2.xy) <- c("longitude", "latitude")
sp3.xy <- data.frame(dismo::randomPoints(r3.sdm, 15, prob = TRUE))
colnames(sp3.xy) <- c("longitude", "latitude")
# Spatial SVMs (this can take about a minute to run)
svm.SP <- rangeSVM(sp1.xy, sp2.xy, sp3.xy, nrep=5)
# Use SVM to create a raster of predicted regions
rand_svm.SP <- rangeSVM_predict(svm = svm.SP, r = r1.sdm)
# }
Run the code above in your browser using DataLab