# NOT RUN {
## 1. Set parameters
mciter <- 2 #500
niter <- 10 #400000
nodes <- 4
## 2. Setup parallel backend to use 4 processors
library(foreach); library(doSNOW)
cl <- makeCluster(4); registerDoSNOW(cl)
## 3. Define foreach loop function
mce.add <- function(mciter, niter, N, n, m, type, method){
h <- foreach(i=1:mciter) %dopar% {
library(matchingMarkets)
mce(seed=i,niter, N, n, m, type, method)
}
do.call(rbind, h)
}
## 4. Run siumlations:
## 4-a. Benchmark study
exp.5.5.ols <- mce.add(mciter=mciter, niter=niter, N=5, n=5, m=40,
type="group.members", method="outcome")
exp.5.5.ntu <- mce.add(mciter=mciter, niter=niter, N=5, n=5, m=40,
type="group.members", method="NTU")
## 4-b. Experiment 1: randomly sampled group members
exp.6.5.ols <- mce.add(mciter=mciter, niter=niter, N=6, n=5, m=40,
type="group.members", method="outcome")
exp.6.5.ntu <- mce.add(mciter=mciter, niter=niter, N=6, n=5, m=40,
type="group.members", method="NTU")
## 4-c. Experiment 2: randomly sampled counterfactual groups
exp.6.6.ols <- mce.add(mciter=mciter, niter=niter, N=6, n=6, m=40,
type="counterfactual.groups", method="outcome")
exp.6.6.ntu <- mce.add(mciter=mciter, niter=niter, N=6, n=6, m=40,
type="counterfactual.groups", method="NTU")
## 5. Stop parallel backend
stopCluster(cl)
# }
Run the code above in your browser using DataLab