Last chance! 50% off unlimited learning
Sale ends in
MC Experiments
mce(seed, niter, N, n, m, type, method)
seed value for Monte Carlo Experiment
number of draws in estimation
group size (population)
group size (sample)
number of markets
type of the MC Experiment. Either group.members
for randomly sampled group members or counterfactual.groups
for randomly sampled number of counterfactual (or feasible) groups in selection equation (capped at limit max.combs=250)
either group.members
or counterfactual.groups
# NOT RUN {
## 1. Set parameters
mciter <- 2 #500
niter <- 10 #400000
nodes <- 4
## 2. Setup parallel backend to use 4 processors
library(foreach); library(doSNOW)
cl <- makeCluster(4); registerDoSNOW(cl)
## 3. Define foreach loop function
mce.add <- function(mciter, niter, N, n, m, type, method){
h <- foreach(i=1:mciter) %dopar% {
library(matchingMarkets)
mce(seed=i,niter, N, n, m, type, method)
}
do.call(rbind, h)
}
## 4. Run siumlations:
## 4-a. Benchmark study
exp.5.5.ols <- mce.add(mciter=mciter, niter=niter, N=5, n=5, m=40,
type="group.members", method="outcome")
exp.5.5.ntu <- mce.add(mciter=mciter, niter=niter, N=5, n=5, m=40,
type="group.members", method="NTU")
## 4-b. Experiment 1: randomly sampled group members
exp.6.5.ols <- mce.add(mciter=mciter, niter=niter, N=6, n=5, m=40,
type="group.members", method="outcome")
exp.6.5.ntu <- mce.add(mciter=mciter, niter=niter, N=6, n=5, m=40,
type="group.members", method="NTU")
## 4-c. Experiment 2: randomly sampled counterfactual groups
exp.6.6.ols <- mce.add(mciter=mciter, niter=niter, N=6, n=6, m=40,
type="counterfactual.groups", method="outcome")
exp.6.6.ntu <- mce.add(mciter=mciter, niter=niter, N=6, n=6, m=40,
type="counterfactual.groups", method="NTU")
## 5. Stop parallel backend
stopCluster(cl)
# }
Run the code above in your browser using DataLab