Learn R Programming

matchingMarkets (version 1.0-4)

plp: Partitioning Linear Programme for the stable roommates problem

Description

Finds the stable matching in the stable roommates problem with transferable utility. Uses the Partitioning Linear Programme formulated in Quint (1991).

Usage

plp(V = NULL, N = NULL)

Value

plp returns a list with the following items.

Valuation.matrix

input values of V.

Assignment.matrix

upper triangular matrix of dimension NxN with entries of 1 for equilibrium pairs and 0 otherwise.

Equilibrium.groups

matrix that gives the N/2 equilibrium pairs and equilibrium partners' mutual valuations.

Arguments

V

valuation matrix of dimension NxN that gives row-players valuation over column players (or vice versa).

N

integer (divisible by 2) that gives the number of players in the market.

Author

Thilo Klein

References

Quint, T. (1991). Necessary and sufficient conditions for balancedness in partitioning games. Mathematical Social Sciences, 22(1):87--91.

Examples

Run this code
## Roommate problem with 10 players, transferable utility and random preferences:
plp(N=10)

## Roommate problem with 10 players, transferable utility and given preferences:
V <- matrix(rep(1:10, 10), 10, 10)
plp(V=V)

Run the code above in your browser using DataLab