var
, sd
, mad
and
IQR
.varDiff(x, idxs=NULL, na.rm=FALSE, diff=1L, trim=0, ...)
colVarDiffs(x, rows=NULL, cols=NULL, na.rm=FALSE, diff=1L, trim=0, ...)
rowVarDiffs(x, rows=NULL, cols=NULL, na.rm=FALSE, diff=1L, trim=0, ...) sdDiff(x, idxs=NULL, na.rm=FALSE, diff=1L, trim=0, ...)
colSdDiffs(x, rows=NULL, cols=NULL, na.rm=FALSE, diff=1L, trim=0, ...)
rowSdDiffs(x, rows=NULL, cols=NULL, na.rm=FALSE, diff=1L, trim=0, ...)
madDiff(x, idxs=NULL, na.rm=FALSE, diff=1L, trim=0, constant=1.4826, ...)
colMadDiffs(x, rows=NULL, cols=NULL, na.rm=FALSE, diff=1L, trim=0, ...)
rowMadDiffs(x, rows=NULL, cols=NULL, na.rm=FALSE, diff=1L, trim=0, ...)
iqrDiff(x, idxs=NULL, na.rm=FALSE, diff=1L, trim=0, ...)
colIQRDiffs(x, rows=NULL, cols=NULL, na.rm=FALSE, diff=1L, trim=0, ...)
rowIQRDiffs(x, rows=NULL, cols=NULL, na.rm=FALSE, diff=1L, trim=0, ...)
double
in [0,1/2] specifying the fraction of
observations to be trimmed from each end of (sorted) x
before estimation.numeric
vector
of length 1, length N, or length K.mad
, apply a correction factor such
that the estimates are consistent with the standard deviation
under Gaussian distributions. The interquartile range (IQR) estimates does not apply such
a correction factor. If asymptotically normal consistency is wanted,
the correction factor for IQR estimate is 1 / (2 * qnorm(3/4))
,
which is half of that used for MAD estimates, which is
1 / qnorm(3/4)
. This correction factor needs to be applied
manually, i.e. there is no constant
argument for the IQR
functions.var
, sd
, mad
and
IQR
.
Internally, diff2
() is used which is a faster version
of diff
().