Learn R Programming

⚠️There's a newer version (1.0.13) of this package.Take me there.

matrixpls (version 0.4.0)

Matrix-based Partial Least Squares estimation

Description

matrixpls is implements Partial Least Squares Path Modeling algorithm and related algorithms. The algorithm implementations aim for computational efficiency using matrix algebra and covariance data. The package is designed toward Monte Carlo simulations and includes functions to perform simple Monte Carlo simulations.

Copy Link

Version

Install

install.packages('matrixpls')

Monthly Downloads

83

Version

0.4.0

License

GPL-3

Issues

Pull Requests

Stars

Forks

Maintainer

Mikko Rönkkö

Last Published

October 24th, 2014

Functions in matrixpls (0.4.0)

effects.matrixpls

Total, Direct, and Indirect Effects for matrixpls results
optim.maximizeInnerR2

Optimization criterion to maximize the inner model mean R2
matrixpls.sim

Monte Carlo simulations with matrixpls
signChange.individual

Individual indicator sign change correction for boostrapping
outer.modeA

PLS outer estimation with Mode A
outer.fixedWeights

PLS outer estimation with fixed weights
matrixpls-package

Matrix-based Partial Least Squares estimation
outer.GSCA

GSCA outer estimation
convCheck.absolute

Absolute difference convergence check criterion
inner.GSCA

GSCA inner estimation
params.plsregression

Parameter estimation with PLS regression
matrixpls

Partial Least Squares and other composite variable models.
R2

R2 for matrixpls results
GoF

Goodness of Fit indices for matrixpls results
inner.path

PLS inner estimation with the path scheme
loadings.matrixpls

Factor loadings matrix from matrixpls results
weight.fixed

Fixed weights
params.regression

Parameter estimation with separate regression analyses
outer.modeB

PLS outer estimation with Mode B
convCheck.square

Squared difference convergence check criterion
residuals.matrixpls

Residual diagnostics for matrixpls results
inner.identity

PLS inner estimation with the identity scheme
convCheck.relative

Relative difference convergence check criterion
params.plsc

Parameter estimation with an adaptation of PLSc algorithm
inner.centroid

PLS inner estimation with the centroid scheme
outer.factor

Blockwise factor score outer estimation
CR

Composite Reliability indices for matrixpls results
matrixpls.plspm

A plspm compatibility wrapper for matrixpls
inner.factor

PLS inner estimation with the factor scheme
matrixpls.sempls

A semPLS compatibility wrapper for matrixpls
weight.pls

Partial Least Squares and other iterative two-stage weight algorithms
params.tsls

Parameter estimation with two-stage least squares
signChange.construct

Construct level sign change correction for boostrapping
fitSummary

Summary of model fit of PLS model
AVE

Average Variance Extracted indices for matrixpls results
weight.optim

Optimized weights
optim.maximizePrediction

Optimization criterion for maximal prediction
predict.matrixpls

Predict method for matrixpls results
matrixpls.boot

Bootstrapping of matrixpls function