Learn R Programming

⚠️There's a newer version (1.0.13) of this package.Take me there.

matrixpls (version 0.5.0)

Matrix-based Partial Least Squares estimation

Description

matrixpls is implements Partial Least Squares Path Modeling algorithm and related algorithms. The algorithm implementations aim for computational efficiency using matrix algebra and covariance data. The package is designed toward Monte Carlo simulations and includes functions to perform simple Monte Carlo simulations.

Copy Link

Version

Install

install.packages('matrixpls')

Monthly Downloads

83

Version

0.5.0

License

GPL-3

Issues

Pull Requests

Stars

Forks

Maintainer

Mikko Rönkkö

Last Published

November 29th, 2014

Functions in matrixpls (0.5.0)

inner.Horst

PLS inner estimation with the Horst scheme
CR

Composite Reliability indices for matrixpls results
matrixpls.plspm

A plspm compatibility wrapper for matrixpls
weight.pls

Partial Least Squares and other iterative two-stage weight algorithms
outer.factor

Blockwise factor score outer estimation
inner.identity

PLS inner estimation with the identity scheme
effects.matrixpls

Total, Direct, and Indirect Effects for matrixpls results
convCheck.absolute

Absolute difference convergence check criterion
GoF

Goodness of Fit indices for matrixpls results
optim.GCCA

GSCA optimization criterion
inner.GSCA

GSCA inner estimation
outer.GSCA

GSCA outer estimation
matrixpls

Partial Least Squares and other composite variable models.
matrixpls.boot

Bootstrapping of matrixpls function
signChange.individual

Individual indicator sign change correction for boostrapping
matrixpls.sempls

A semPLS compatibility wrapper for matrixpls
inner.factor

PLS inner estimation with the factor scheme
outer.modeA

PLS outer estimation with Mode A
params.plsregression

Parameter estimation with PLS regression
AVE

Average Variance Extracted indices for matrixpls results
convCheck.square

Squared difference convergence check criterion
matrixpls-package

Matrix-based Partial Least Squares estimation
predict.matrixpls

Predict method for matrixpls results
optim.maximizeInnerR2

Optimization criterion to maximize the inner model mean R2
loadings

Factor loadings matrix from matrixpls results
inner.path

PLS inner estimation with the path scheme
residuals.matrixpls

Residual diagnostics for matrixpls results
params.plsc

Parameter estimation with an adaptation of PLSc algorithm
optim.GSCA

GSCA optimization criterion
matrixpls.sim

Monte Carlo simulations with matrixpls
outer.RGCCA

RGCCA outer estimation (Experimental)
params.regression

Parameter estimation with separate regression analyses
weight.fixed

Fixed weights
signChange.construct

Construct level sign change correction for boostrapping
optim.maximizePrediction

Optimization criterion for maximal prediction
weight.optim

Optimized weights
inner.centroid

PLS inner estimation with the centroid scheme
outer.fixedWeights

PLS outer estimation with fixed weights
params.tsls

Parameter estimation with two-stage least squares
R2

R2 for matrixpls results
fitSummary

Summary of model fit of PLS model
convCheck.relative

Relative difference convergence check criterion
outer.modeB

PLS outer estimation with Mode B