## from optim
fr <- function(x) { ## Rosenbrock Banana function
x1 <- x[1]
x2 <- x[2]
100 * (x2 - x1 * x1)^2 + (1 - x1)^2
}
grr <- function(x) { ## Gradient of 'fr'
x1 <- x[1]
x2 <- x[2]
c(-400 * x1 * (x2 - x1 * x1) - 2 * (1 - x1),
200 * (x2 - x1 * x1))
}
optim(c(-1.2,1), fr, grr)
#Box-constraint, optimum on the boundary
constrOptim2(c(-1.2,0.9), fr, grr, ui=rbind(c(-1,0),c(0,-1)), ci=c(-1,-1))
# x<=0.9, y-x>0.1
constrOptim2(c(.5,0), fr, grr, ui=rbind(c(-1,0),c(1,-1)), ci=c(-0.9,0.1))
## Solves linear and quadratic programming problems
## but needs a feasible starting value
#
# from example(solve.QP) in 'quadprog'
# no derivative
fQP <- function(b) {-sum(c(0,5,0)*b)+0.5*sum(b*b)}
Amat <- matrix(c(-4,-3,0,2,1,0,0,-2,1),3,3)
bvec <- c(-8,2,0)
constrOptim2(c(2,-1,-1), fQP, NULL, ui=t(Amat),ci=bvec)
# derivative
gQP <- function(b) {-c(0,5,0)+b}
constrOptim2(c(2,-1,-1), fQP, gQP, ui=t(Amat), ci=bvec)
## Now with maximisation instead of minimisation
hQP <- function(b) {sum(c(0,5,0)*b)-0.5*sum(b*b)}
constrOptim2(c(2,-1,-1), hQP, NULL, ui=t(Amat), ci=bvec,
control=list(fnscale=-1))
Run the code above in your browser using DataLab