Learn R Programming

⚠️There's a newer version (1.5-2.1) of this package.Take me there.

maxLik (version 1.4-6)

Maximum Likelihood Estimation and Related Tools

Description

Functions for Maximum Likelihood (ML) estimation, non-linear optimization, and related tools. It includes a unified way to call different optimizers, and classes and methods to handle the results from the Maximum Likelihood viewpoint. It also includes a number of convenience tools for testing and developing your own models.

Copy Link

Version

Install

install.packages('maxLik')

Monthly Downloads

24,551

Version

1.4-6

License

GPL (>= 2)

Maintainer

Ott Toomet

Last Published

November 24th, 2020

Functions in maxLik (1.4-6)

bread.maxLik

Bread for Sandwich Estimator
gradient

Extract Gradients Evaluated at each Observation
MaxControl-class

Class "MaxControl"
fnSubset

Call fnFull with variable and fixed parameters
hessian

Hessian matrix
logLik.maxLik

Return the log likelihood value
maxBFGS

BFGS, conjugate gradient, SANN and Nelder-Mead Maximization
compareDerivatives

function to compare analytic and numeric derivatives
condiNumber

Print matrix condition numbers column-by-column
maxLik-internal

Internal maxLik Functions
activePar

free parameters under maximization
maxNR

Newton- and Quasi-Newton Maximization
maxValue

Function value at maximum
maxSGA

Stochastic Gradient Ascent
maximType

Type of Minimization/Maximization
AIC.maxLik

Methods for the various standard functions
objectiveFn

Optimization Objective Function
vcov.maxLik

Variance Covariance Matrix of maxLik objects
returnCode

Success or failure of the optimization
sumt

Equality-constrained optimization
maxLik

Maximum likelihood estimation
maxLik-package

Maximum Likelihood Estimation
summary.maxim

Summary method for maximization
nIter

Return number of iterations for iterative models
nParam.maxim

Number of model parameters
nObs.maxLik

Number of Observations
storedValues

Return the stored values of optimization
numericGradient

Functions to Calculate Numeric Derivatives
summary.maxLik

summary the Maximum-Likelihood estimation