Learn R Programming

mbclusterwise (version 1.0)

Clusterwise Multiblock Analyses

Description

Perform clusterwise multiblock analyses (clusterwise multiblock Partial Least Squares, clusterwise multiblock Redundancy Analysis or a regularized method between the two latter ones) associated with a F-fold cross-validation procedure to select the optimal number of clusters and dimensions.

Copy Link

Version

Install

install.packages('mbclusterwise')

Monthly Downloads

16

Version

1.0

License

GPL (>= 2.0)

Maintainer

Stephanie Bougeard

Last Published

November 22nd, 2016

Functions in mbclusterwise (1.0)

cw.multiblock

Clusterwise multiblock analyses
cw.predict

Prediction procedure for clusterwise multiblock analyses
simdata.red

Simulated toy data with two groups to test the mbclusterwise package
mbregular

Regularized multiblock regression
cw.tenfold

F-Fold cross-validation for clusterwise multiblock analyses
mbclusterwise-package

\Sexpr[results=rd,stage=build]{tools:::Rd_package_title("#1")}mbclusterwiseClusterwise Multiblock Analyses
mbpcaiv.fast

Multiblock principal component analysis with instrumental variables (also called multiblock Redundancy Analysis)
mbpls.fast

Multiblock partial least squares