### a simple two-dimensional example: cars data
cars.gb <- gamboost(dist ~ speed, data = cars, dfbase = 4,
control = boost_control(mstop = 50))
cars.gb
AIC(cars.gb, method = "corrected")
### plot fit for mstop = 1, ..., 50
plot(dist ~ speed, data = cars)
tmp <- sapply(1:mstop(AIC(cars.gb)), function(i)
lines(cars$speed, predict(cars.gb[i]), col = "red"))
lines(cars$speed, predict(smooth.spline(cars$speed, cars$dist),
cars$speed)$y, col = "green")
### artificial example: sinus transformation
x <- sort(runif(100)) * 10
y <- sin(x) + rnorm(length(x), sd = 0.25)
plot(x, y)
### linear model
lines(x, fitted(lm(y ~ sin(x) - 1)), col = "red")
### GAM
lines(x, fitted(gamboost(y ~ x,
control = boost_control(mstop = 500))),
col = "green")
Run the code above in your browser using DataLab