Used to assess multi-calibration based on a list of
binary valued columns: subpops
passed during initialization.
AuditorFitter
list
with items
corr
: pseudo-correlation between residuals and learner prediction.
l
: the trained learner.
mcboost::AuditorFitter
-> SubpopAuditorFitter
subpops
list
List of subpopulation indicators.
Initialize a SubpopAuditorFitter
new()
Initializes a SubpopAuditorFitter
that
assesses multi-calibration within each group defined
by the subpops'. Names in
subpops` must correspond to
columns in the data.
SubpopAuditorFitter$new(subpops)
subpops
list
Specifies a collection of characteristic attributes
and the values they take to define subpopulations
e.g. list(age = c('20-29','30-39','40+'), nJobs = c(0,1,2,'3+'), ,..).
fit()
Fit the learner and compute correlation
SubpopAuditorFitter$fit(data, resid, mask)
data
data.table
Features.
resid
numeric
Residuals (of same length as data).
mask
integer
Mask applied to the data. Only used for SubgroupAuditorFitter
.
clone()
The objects of this class are cloneable with this method.
SubpopAuditorFitter$clone(deep = FALSE)
deep
Whether to make a deep clone.
Other AuditorFitter:
CVLearnerAuditorFitter
,
LearnerAuditorFitter
,
SubgroupAuditorFitter
library("data.table")
data = data.table(
"AGE_NA" = c(0, 0, 0, 0, 0),
"AGE_0_10" = c(1, 1, 0, 0, 0),
"AGE_11_20" = c(0, 0, 1, 0, 0),
"AGE_21_31" = c(0, 0, 0, 1, 1),
"X1" = runif(5),
"X2" = runif(5)
)
label = c(1,0,0,1,1)
pops = list("AGE_NA", "AGE_0_10", "AGE_11_20", "AGE_21_31", function(x) {x[["X1" > 0.5]]})
sf = SubpopAuditorFitter$new(subpops = pops)
sf$fit(data, label - 0.5)
Run the code above in your browser using DataLab