Calculate Lagrangian correlation of the exponential form
.cor_lagr_exp(v1, v2, k = 2, h1, h2, u)
Correlations of the same dimension as h1
.
Prevailing wind, u-component.
Prevailing wind, v-component.
Scale parameter of \(\|\boldsymbol v\|\), \(k>0\). Default is 2.
Horizontal distance matrix or array.
Vertical distance matrix or array, same dimension as h1
.
Time lag, same dimension as h1
.
The Lagrangian correlation function of the exponential form with parameters \(\boldsymbol v = (v_1, v_2)^\top\in\mathbb{R}^2\) has the form $$C(\mathbf{h}, u)=\exp\left(-\dfrac{1}{k\|\boldsymbol v\|} \left\|\mathbf{h}-u\boldsymbol v\right\|\right),$$ where \(\|\cdot\|\) is the Euclidean distance, \(\mathbf{h} = (\mathrm{h}_1, \mathrm{h}_2)^\top\in\mathbb{R}^2\), and \(k > 0\) is the scale parameter controlling the magnitude of asymmetry in correlation.
Diggle, P. J., Tawn, J. A., & Moyeed, R. A. (1998). Model-Based Geostatistics. Journal of the Royal Statistical Society. Series C (Applied Statistics), 47(3), 299–350.