Learn R Programming

mcgf (version 1.1.1)

.cor_sep: Calculate correlation for separable model

Description

Calculate correlation for separable model

Usage

.cor_sep(spatial, temporal, par_s, par_t)

Value

Correlations for separable model.

Arguments

spatial

Pure spatial model, exp or cauchy for now.

temporal

Pure temporal model, exp or cauchy for now.

par_s

Parameters for the pure spatial model. Nugget effect supported.

par_t

Parameters for the pure temporal model.

Details

The separable model is the product of a pure temporal model, \(C_T(u)\), and a pure spatial model, \(C_S(\mathbf{h})\). It is of the form $$C(\mathbf{h}, u)=C_{T}(u) \left[(1-\text{nugget})C_{S}(\mathbf{h})+\text{nugget} \delta_{\mathbf{h}=0}\right],$$ where \(\delta_{x=0}\) is 1 when \(x=0\) and 0 otherwise. Here \(\mathbf{h}\in\mathbb{R}^2\) and \(u\in\mathbb{R}\). Now only exponential and Cauchy correlation models are available.

References

Gneiting, T. (2002). Nonseparable, Stationary Covariance Functions for Space–Time Data, Journal of the American Statistical Association, 97:458, 590-600.