cor_cauchy(x, a, alpha, nu = 1, nugget = 0, is.dist = FALSE)
Value
Correlations of the same dimension as x.
Arguments
x
A numeric vector, matrix, or array.
a
Smooth parameter, \(a>0\).
alpha
Scale parameter, \(\alpha\in(0, 1]\).
nu
Power parameter, \(\nu>0\). Default is 1.
nugget
The nugget effect \(\in[0, 1]\).
is.dist
Logical; if TRUE, x is a distance matrix or an array of
distance matrices.
Details
The Cauchy correlation function with scale parameter \(a\) and
smooth parameter \(\alpha\) has the form
$$C(x)=(1-\text{nugget})(a|x|^{2\alpha} + 1)^{-\nu}+\text{nugget}\cdot
\delta_{x=0},$$ where \(\delta_{x=0}\) is 1 when \(x=0\) and 0 otherwise.
References
Gneiting, T., and Schlather, M. (2004). Stochastic Models That Separate
Fractal Dimension and the Hurst Effect. SIAM Review, 46(2), 269–282.