data(sim1)
sim1_mcgf <- mcgf(sim1$data, dists = sim1$dists)
sim1_mcgf <- add_acfs(sim1_mcgf, lag_max = 5)
sim1_mcgf <- add_ccfs(sim1_mcgf, lag_max = 5)
# Fit a separable model and store it to 'sim1_mcgf'
fit_sep <- fit_base(
sim1_mcgf,
model = "sep",
lag = 5,
par_init = c(
c = 0.001,
gamma = 0.5,
a = 0.3,
alpha = 0.5
),
par_fixed = c(nugget = 0)
)
sim1_mcgf <- add_base(sim1_mcgf, fit_base = fit_sep)
# Fit a Lagrangian model
fit_lagr <- fit_lagr(
sim1_mcgf,
model = "lagr_tri",
par_init = c(v1 = 300, v2 = 300, lambda = 0.15),
par_fixed = c(k = 2)
)
# Store the fitted Lagrangian model to 'sim1_mcgf'
sim1_mcgf <- add_lagr(sim1_mcgf, fit_lagr = fit_lagr)
# Calculate the simple kriging predictions and intervals
sim1_krige <- krige(sim1_mcgf, interval = TRUE)
# Calculate RMSE for each location
rmse <- sqrt(colMeans((sim1_mcgf - sim1_krige$fit)^2, na.rm = TRUE))
rmse
# Calculate MAE for each location
mae <- colMeans(abs(sim1_mcgf - sim1_krige$fit), na.rm = TRUE)
mae
# Calculate POPI for each location
popi <- colMeans(
sim1_mcgf < sim1_krige$lower | sim1_mcgf > sim1_krige$upper,
na.rm = TRUE
)
popi
Run the code above in your browser using DataLab