data(sim2)
sim2_mcgf <- mcgf_rs(sim2$data, dists = sim2$dists, label = sim2$label)
sim2_mcgf <- add_acfs(sim2_mcgf, lag_max = 5)
sim2_mcgf <- add_ccfs(sim2_mcgf, lag_max = 5)
# Fit a regime-switching separable model
fit_sep <- fit_base(
sim2_mcgf,
lag_ls = 5,
model_ls = "sep",
par_init_ls = list(list(
c = 0.00005,
gamma = 0.5,
a = 0.5,
alpha = 0.5
)),
par_fixed_ls = list(c(nugget = 0))
)
# Store the fitted separable models to 'sim2_mcgf'
sim2_mcgf <- add_base(sim2_mcgf, fit_base_ls = fit_sep)
# Calculate the simple kriging predictions and intervals
sim2_krige <- krige(sim2_mcgf, model = "base", interval = TRUE)
# Calculate RMSE for each location
rmse <- sqrt(colMeans((sim2_mcgf - sim2_krige$fit)^2, na.rm = TRUE))
rmse
# Calculate MAE for each location
mae <- colMeans(abs(sim2_mcgf - sim2_krige$fit), na.rm = TRUE)
mae
# Calculate POPI for each location
popi <- colMeans(
sim2_mcgf < sim2_krige$lower | sim2_mcgf > sim2_krige$upper,
na.rm = TRUE
)
popi
Run the code above in your browser using DataLab