mclustDAtrain(data, labels, G, emModelNames, eps, tol, itmax,
equalPro, warnSingular, verbose)
eps
allow computations to proceed nearer to singularity. The
default is .Mclust$eps
..Mclust$tol
..Mclust$itmax
..Mclust$equalPro
.warnSingular=FALSE
.verbose=TRUE
.summary.mclustDAtrain
,
mclustDAtest
,
EMclust
,
hc
,
mclustOptions
n <- 250 ## create artificial data
set.seed(0)
par(pty = "s")
x <- rbind(matrix(rnorm(n*2), n, 2) %*% diag(c(1,9)),
matrix(rnorm(n*2), n, 2) %*% diag(c(1,9))[,2:1])
xclass <- c(rep(1,n),rep(2,n))
mclust2Dplot(x, classification = xclass, type="classification", ask=FALSE)
odd <- seq(1, 2*n, 2)
train <- mclustDAtrain(x[odd, ], labels = xclass[odd]) ## training step
summary(train)
even <- odd + 1
test <- mclustDAtest(x[even, ], train) ## compute model densities
clEven <- summary(test)$class ## classify training set
compareClass(clEven,xclass[even])
Run the code above in your browser using DataLab