mstepE( data, z, prior = NULL, warn = NULL, ...)
mstepV( data, z, prior = NULL, warn = NULL, ...)
mstepEII( data, z, prior = NULL, warn = NULL, ...)
mstepVII( data, z, prior = NULL, warn = NULL, ...)
mstepEEI( data, z, prior = NULL, warn = NULL, ...)
mstepVEI( data, z, prior = NULL, warn = NULL, control = NULL, ...)
mstepEVI( data, z, prior = NULL, warn = NULL, ...)
mstepVVI( data, z, prior = NULL, warn = NULL, ...)
mstepEEE( data, z, prior = NULL, warn = NULL, ...)
mstepEEV( data, z, prior = NULL, warn = NULL, ...)
mstepVEV( data, z, prior = NULL, warn = NULL, control = NULL,...)
mstepVVV( data, z, prior = NULL, warn = NULL, ...)
mstepEVE( data, z, prior = NULL, warn = NULL, control = NULL, ...)
mstepEVV( data, z, prior = NULL, warn = NULL, ...)
mstepVEE( data, z, prior = NULL, warn = NULL, control = NULL, ...)
mstepVVE( data, z, prior = NULL, warn = NULL, control = NULL, ...)
[i,k]
th entry is the
conditional probability of the ith observation belonging to
the kth component of the mixture.
In analyses involving noise, this should not include the
conditional probabilities for the noise component.
mclust.options("warn")
.
"VEI"
and "VEV"
that have an iterative M-step. This should be a list with components
named itmax and tol. These components can be of length 1
or 2; in the latter case, mstep
will use the second value, under
the assumption that the first applies to an outer iteration (as in the
function me
).
The default uses the default values from the function emControl
,
which sets no limit on the number of iterations, and a relative tolerance
of sqrt(.Machine$double.eps)
on successive iterates.
do.call
.
mstep
,
me
,
estep
,
mclustVariance
,
priorControl
,
emControl
.
mstepVII(data = iris[,-5], z = unmap(iris[,5]))
Run the code above in your browser using DataLab