
Last chance! 50% off unlimited learning
Sale ends in
Simulate data from a parameterized MVN mixture model.
simE(parameters, n, seed = NULL, …)
simV(parameters, n, seed = NULL, …)
simEII(parameters, n, seed = NULL, …)
simVII(parameters, n, seed = NULL, …)
simEEI(parameters, n, seed = NULL, …)
simVEI(parameters, n, seed = NULL, …)
simEVI(parameters, n, seed = NULL, …)
simVVI(parameters, n, seed = NULL, …)
simEEE(parameters, n, seed = NULL, …)
simEEV(parameters, n, seed = NULL, …)
simVEV(parameters, n, seed = NULL, …)
simVVV(parameters, n, seed = NULL, …)
simEVE(parameters, n, seed = NULL, …)
simEVV(parameters, n, seed = NULL, …)
simVEE(parameters, n, seed = NULL, …)
simVVE(parameters, n, seed = NULL, …)
A list with the following components:
pro
A vector whose kth component is the mixing proportion for the kth component of the mixture model. If missing, equal proportions are assumed.
mean
The mean for each component. If there is more than one component, this is a matrix whose kth column is the mean of the kth component of the mixture model.
variance
A list of variance parameters for the model.
The components of this list depend on the model
specification. See the help file for mclustVariance
for details.
An integer specifying the number of data points to be simulated.
An optional integer argument to set.seed
for reproducible
random class assignment. By default the current seed will be used.
Reproducibility can also be achieved by calling set.seed
before calling sim
.
Catches unused arguments in indirect or list calls via do.call
.
A matrix in which first column is the classification and the remaining
columns are the n
observations simulated from the specified MVN
mixture model.
"modelName"
A character string indicating the variance
model used for the simulation.
This function can be used with an indirect or list call using
do.call
, allowing the output of e.g. mstep
, em
me
, Mclust
, to be passed directly without the need
to specify individual parameters as arguments.
# NOT RUN {
d <- 2
G <- 2
scale <- 1
shape <- c(1, 9)
O1 <- diag(2)
O2 <- diag(2)[,c(2,1)]
O <- array(cbind(O1,O2), c(2, 2, 2))
O
variance <- list(d= d, G = G, scale = scale, shape = shape, orientation = O)
mu <- matrix(0, d, G) ## center at the origin
simdat <- simEEV( n = 200,
parameters = list(pro=c(1,1),mean=mu,variance=variance),
seed = NULL)
cl <- simdat[,1]
sigma <- array(apply(O, 3, function(x,y) crossprod(x*y),
y = sqrt(scale*shape)), c(2,2,2))
paramList <- list(mu = mu, sigma = sigma)
coordProj( simdat, paramList = paramList, classification = cl)
# }
Run the code above in your browser using DataLab