
Last chance! 50% off unlimited learning
Sale ends in
Simulate data from parameterized MVN mixture models.
sim(modelName, parameters, n, seed = NULL, ...)
A matrix in which first column is the classification and the remaining
columns are the n
observations simulated from the specified MVN
mixture model.
"modelName"
A character string indicating the variance
model used for the simulation.
A character string indicating the model. The help file for
mclustModelNames
describes the available models.
A list with the following components:
pro
A vector whose kth component is the mixing proportion for the kth component of the mixture model. If missing, equal proportions are assumed.
mean
The mean for each component. If there is more than one component, this is a matrix whose kth column is the mean of the kth component of the mixture model.
variance
A list of variance parameters for the model.
The components of this list depend on the model
specification. See the help file for mclustVariance
for details.
An integer specifying the number of data points to be simulated.
An optional integer argument to set.seed
for reproducible
random class assignment. By default the current seed will be used.
Reproducibility can also be achieved by calling set.seed
before calling sim
.
Catches unused arguments in indirect or list calls via do.call
.
This function can be used with an indirect or list call using
do.call
, allowing the output of e.g. mstep
, em
,
me
, Mclust
to be passed directly without the need to
specify individual parameters as arguments.
simE
, ...,
simVVV
,
Mclust
,
mstep
,
do.call
irisBIC <- mclustBIC(iris[,-5])
irisModel <- mclustModel(iris[,-5], irisBIC)
names(irisModel)
irisSim <- sim(modelName = irisModel$modelName,
parameters = irisModel$parameters,
n = nrow(iris))
# \donttest{
do.call("sim", irisModel) # alternative call
# }
par(pty = "s", mfrow = c(1,2))
dimnames(irisSim) <- list(NULL, c("dummy", (dimnames(iris)[[2]])[-5]))
dimens <- c(1,2)
lim1 <- apply(iris[,dimens],2,range)
lim2 <- apply(irisSim[,dimens+1],2,range)
lims <- apply(rbind(lim1,lim2),2,range)
xlim <- lims[,1]
ylim <- lims[,2]
coordProj(iris[,-5], parameters=irisModel$parameters,
classification=map(irisModel$z),
dimens=dimens, xlim=xlim, ylim=ylim)
coordProj(iris[,-5], parameters=irisModel$parameters,
classification=map(irisModel$z), truth = irisSim[,-1],
dimens=dimens, xlim=xlim, ylim=ylim)
irisModel3 <- mclustModel(iris[,-5], irisBIC, G=3)
irisSim3 <- sim(modelName = irisModel3$modelName,
parameters = irisModel3$parameters, n = 500, seed = 1)
# \donttest{
irisModel3$n <- NULL
irisSim3 <- do.call("sim",c(list(n=500,seed=1),irisModel3)) # alternative call
# }
clPairs(irisSim3[,-1], cl = irisSim3[,1])
Run the code above in your browser using DataLab