Compute an estimate of the (differential) entropy from a Gaussian Mixture Model (GMM) fitted using the mclust package.
EntropyGMM(object, ...)# S3 method for densityMclust
EntropyGMM(object, ...)
# S3 method for densityMclustBounded
EntropyGMM(object, ...)
# S3 method for Mclust
EntropyGMM(object, ...)
# S3 method for data.frame
EntropyGMM(object, ...)
# S3 method for matrix
EntropyGMM(object, ...)
EntropyGauss(sigma)
nats2bits(x)
bits2nats(x)
EntropyGMM() returns an estimate of the entropy based on a
estimated Gaussian mixture model (GMM) fitted using the mclust
package. If a matrix of data values is provided, a GMM is preliminary
fitted to the data and then the entropy computed.
EntropyGauss() returns the entropy for a multivariate Gaussian
distribution with covariance matrix sigma.
nats2bits() and bits2nats() convert input values in nats to
bits, and viceversa. Information-theoretic quantities have different
units depending on the base of the logarithm used: nats are expressed
in base-2 logarithms, whereas bits in natural logarithms.
An object of class 'Mclust', 'densityMclust', or
'densityMclustBounded', obtained by fitting a Gaussian mixture via,
respectively, mclust::Mclust(), mclust::densityMclust(), and
densityMclustBounded().
If a matrix or data.frame is provided as input, a GMM using the
provided data is estimated preliminary to computing the entropy.
In this case further arguments can be provided to control the fitted model
(e.g. number of mixture components and/or covariances decomposition).
Further arguments passed to or from other methods.
A symmetric covariance matrix.
A vector of values.
Luca Scrucca
For more details see
vignette("mclustAddons")
Robin S. and Scrucca L. (2023) Mixture-based estimation of entropy. Computational Statistics & Data Analysis, 177, 107582. tools:::Rd_expr_doi("doi:10.1016/j.csda.2022.107582")
mclust::Mclust(), mclust::densityMclust().
# \donttest{
X = iris[,1:4]
mod = densityMclust(X, plot = FALSE)
h = EntropyGMM(mod)
h
bits2nats(h)
EntropyGMM(X)
# }
Run the code above in your browser using DataLab