GMMlogreturn: Modeling log-returns distribution via Gaussian Mixture Models
Description
Gaussian mixtures for modeling the distribution of financial log-returns.
Usage
GMMlogreturn(y, ...)
# S3 method for GMMlogreturn
summary(object, ...)
Value
Returns an object of class 'GMMlogreturn'.
Arguments
y
A numeric vector providing the log-returns of a financial stock.
...
Further arguments passed to mclust::densityMclust(). For a full
description of available arguments see the corresponding help page.
object
An object of class 'GMMlogreturn'.
Author
Luca Scrucca
Details
Let \(P_t\) be the price of a financial stock for the current time frame
(day for instance), and \(P_{t-1}\) the price of the previous time frame.
The log-return at time \(t\) is defined as:
$$
y_t = \log( \frac{P_t}{P_{t-1}} )
$$
By default, a univariate heteroscedastic GMM using Bayesian regularization
(as described in mclust::priorControl()) is fitted to the observed
log-returns. The number of mixture components is automatically selected
by BIC, unless specified with the optional G argument.
References
Scrucca L. (2024) Entropy-based volatility analysis of financial
log-returns using Gaussian mixture models. Entropy, 26(11), 907.
tools:::Rd_expr_doi("10.3390/e26110907")