# \donttest{
data(iris)
# default: flat priors on regression coefficients
sampler <- create_sampler(Sepal.Length ~
reg(~ Petal.Length + Species, name="beta"),
data=iris
)
sim <- MCMCsim(sampler, burnin=100, n.iter=400)
summary(sim)
# (weakly) informative normal priors on regression coefficients
sampler <- create_sampler(Sepal.Length ~
reg(~ Petal.Length + Species, Q0=1e-2, name="beta"),
data=iris
)
sim <- MCMCsim(sampler, burnin=100, n.iter=400)
summary(sim)
# binary regression
sampler <- create_sampler(Species == "setosa" ~
reg(~ Sepal.Length, Q=0.1, name="beta"),
family="binomial", data=iris)
sim <- MCMCsim(sampler, burnin=100, n.iter=400)
summary(sim)
pred <- predict(sim)
str(pred)
# example with equality constrained regression effects
n <- 500
df <- data.frame(x=runif(n))
df$y <- rnorm(n, 1 + 2*df$x)
R <- matrix(1, 2, 1)
r <- 3
sampler <- create_sampler(y ~ reg(~ 1 + x, R=R, r=r, name="beta"), data=df)
sim <- MCMCsim(sampler)
summary(sim)
plot(sim, "beta")
summary(transform_dc(sim$beta, fun=function(x) crossprod_mv(R, x) - r))
# }
Run the code above in your browser using DataLab