Learn R Programming

mdatools (version 0.7.0)

getClassificationPerformance: Calculation of classification performance parameters

Description

Calculates and returns performance parameters for classification result (e.g. number of false negatives, false positives, sensitivity, specificity, etc.).

Usage

getClassificationPerformance(c.ref, c.pred)

Arguments

c.ref
reference class values for objects (vector with numeric or text values)
c.pred
predicted class values for objects (array nobj x ncomponents x nclasses)

Value

Returns a list with following fields:
$fn
number of false negatives (nclasses x ncomponents)
$fp
number of false positives (nclasses x ncomponents)
$tp
number of true positives (nclasses x ncomponents)
$sensitivity
sensitivity values (nclasses x ncomponents)
$specificity
specificity values (nclasses x ncomponents)
$sensitivity
misclassified ratio values (nclasses x ncomponents)

Details

The function is called automatically when a classification result with reference values is created, for example when applying a plsda or simca models.