Usage
DHGLMMODELING(Model="mean",Link=NULL,LinPred="constant",RandDist=NULL,
Offset=NULL,LMatrix=NULL,LinkRandVariance=NULL,LinPredRandVariance=NULL,
RandDistRandVariance="gaussian",
LinkRandVariance2=NULL,LinPredRandVariance2=NULL)
Arguments
Model
This option specifies a GLM, HGLM or DHGLM model for mu when Model="mean" (default),
and a GLM or HGLM for phi when Model="dispersion".
Link
The link function for the linear predictor is
specified by the option Link. For Model="mean", Link can be "identity",
"logit", "probit", "cloglog", "log", or "inverse".
For Model="dispersion", the choice is either "log" or "inverse".
The default, sp
LinPred
The option LinPred specifies the fixed and
random terms for the linear predictor for mu when specified as Model="mean"
or for phi when Model="dispersion". For Model="mean", LinPred=y~x1+x2+(1|id1)+(1|id2)
specifies y as the main response, x1 and x2 as
RandDist
The option RandDist specifies the
distributions of the random terms represented in the option LinPred.
It is set as a vector of distribution names from "gaussain" (default),
"beta", "gamma", or "inverse-gamma" when Model="mean".
For Model="dispersion"
Offset
The option Offset can be used to
specify a known component to be included in the linear predictor specified by LinPred
during fitting. This should be the default (NULL) or a numeric
vector of length equal to that of the appropriate data.
LMatrix
The option LMatrix sets a matrix that is used as a
post-multiplier for the model matrix of the corresponding random effects. This
option allows correlation structures to be defined for random effects. For
example, when specified as Model="mean" and Lma
LinkRandVariance
The option LinkRandVariance
specifies the link function for the linear
predictor of the random-effect variances.
The choice is either "log" (default) or "inverse". When more than two random terms are specified in the option LinPred,
the user can set d
LinPredRandVariance
The option LinPredRandVariance specifies the
fixed and random terms for the linear predictor of the random-effect
variances for Model="mean". When y~x1+x2+(1|id1)+(1|id2) is specified in the option LinPred,
LinPredRandVariance=c(lambda~xx1+(1|id11),
RandDistRandVariance
The option RandDistRandVariance specifies the
distributions for the random terms in the LinPredRandVariance.
The choice is "gaussian" (default), "gamma", or "inverse-gamma".
LinkRandVariance2
This option specifies the link function for the linear
predictor of the variance of random effects, which are specified in the option
LinPredRandVariance. The choice is either "log" (default) or "inverse".
LinPredRandVariance2
This option specifies the fixed terms for the linear
predictor of the variance of random effects, which is specified in the option LinPredRandVariance.
For example, when LinPredRandVariance=c(lambda~xx1+(1|id11),lambda~xx1+(1|id12))
is specified, LinP