Selecting the optimal multidimensional scaling procedure - metric MDS (by varying all combinations of normalization methods, distance measures, and metric MDS models) and nonmetric MDS (by varying all combinations of normalization methods and distance measures)
findOptimalSmacofSym(table,
critical_stress=(max(as.numeric(gsub(",",".",table[,"STRESS 1"],fixed=TRUE)))+
min(as.numeric(gsub(",",".",table[,"STRESS 1"],fixed=TRUE))))/2,
critical_HHI=NA)
number of row in table
with optimal multidimensional scaling procedure
normalization method used for optimal multidimensional scaling procedure
MDS model used for optimal multidimensional scaling procedure
Additional spline.degree value for optimal procedure, if mspline model is used for simulation. For other models there is no value for this field
distance measure used for optimal multidimensional scaling procedure
value of Kruskal Stress-1 fit measure for optimal multidimensional scaling procedure
Hirschman-Herfindahl HHI index, calculated based on stress per point, for optimal multidimensional scaling procedure
result from optSmacofSym_nMDS
or optSmacofSym_mMDS
. Data frame ordered by increasing value of Stress-1 fit measure or HHI index with columns:
Normalization method
Distance measure
MDS model
Spline degree
STRESS 1
HHI spp
threshold value of Kruskal's Stress-1 fit measure. Default - mid-range of Kruskal's Stress-1 fit measures calculated for all MDS procedures
threshold value of Hirschman-Herfindahl HHI index. Only one parameter critical_stress or critical_HHI can be set, and the function finds the optimal value among the procedures for which the selected measure is lower or equal treshold value
Marek Walesiak marek.walesiak@ue.wroc.pl, Andrzej Dudek andrzej.dudek@ue.wroc.pl
Department of Econometrics and Computer Science, Wroclaw University of Economics and Business, Poland
Borg, I., Groenen, P.J.F. (2005), Modern Multidimensional Scaling. Theory and Applications, 2nd Edition, Springer Science+Business Media, New York. ISBN: 978-0387-25150-9. Available at: https://link.springer.com/book/10.1007/0-387-28981-X.
Borg, I., Groenen, P.J.F., Mair, P. (2013), Applied Multidimensional Scaling, Springer, Heidelberg, New York, Dordrecht, London. Available at: tools:::Rd_expr_doi("10.1007/978-3-642-31848-1").
De Leeuw, J., Mair, P. (2015), Shepard Diagram, Wiley StatsRef: Statistics Reference Online, John Wiley & Sons Ltd.
Dudek, A., Walesiak, M. (2020), The Choice of Variable Normalization Method in Cluster Analysis, pp. 325-340, [In:] K. S. Soliman (Ed.), Education Excellence and Innovation Management: A 2025 Vision to Sustain Economic Development during Global Challenges, Proceedings of the 35th International Business Information Management Association Conference (IBIMA), 1-2 April 2020, Seville, Spain. ISBN: 978-0-9998551-4-1.
Herfindahl, O.C. (1950), Concentration in the Steel Industry, Doctoral thesis, Columbia University.
Hirschman, A.O. (1964). The Paternity of an Index, The American Economic Review, Vol. 54, 761-762.
Walesiak, M. (2014), Przegląd formuł normalizacji wartości zmiennych oraz ich własności w statystycznej analizie wielowymiarowej [Data Normalization in Multivariate Data Analysis. An Overview and Properties], Przegląd Statystyczny, tom 61, z. 4, 363-372. Available at: tools:::Rd_expr_doi("10.5604/01.3001.0016.1740").
Walesiak, M. (2016a), Wybór grup metod normalizacji wartości zmiennych w skalowaniu wielowymiarowym [The Choice of Groups of Variable Normalization Methods in Multidimensional Scaling], Przegląd Statystyczny, tom 63, z. 1, 7-18. Available at: tools:::Rd_expr_doi("10.5604/01.3001.0014.1145").
Walesiak, M. (2016b), Visualization of Linear Ordering Results for Metric Data with the Application of Multidimensional Scaling, Ekonometria, 2(52), 9-21. Available at: tools:::Rd_expr_doi("10.15611/ekt.2016.2.01").
Walesiak, M., Dudek, A. (2017), Selecting the Optimal Multidimensional Scaling Procedure for Metric Data with R Environment, STATISTICS IN TRANSITION new series, September, Vol. 18, No. 3, pp. 521-540.
Walesiak, M., Dudek, A. (2020), Searching for an Optimal MDS Procedure for Metric and Interval-Valued Data using mdsOpt R package, pp. 307-324, [In:] K. S. Soliman (Ed.), Education Excellence and Innovation Management: A 2025 Vision to Sustain Economic Development during Global Challenges, Proceedings of the 35th International Business Information Management Association Conference (IBIMA), 1-2 April 2020, Seville, Spain. ISBN: 978-0-9998551-4-1.
data.Normalization
, dist.GDM
, dist
, smacofSym
# \donttest{
library(mdsOpt)
metnor<-c("n1","n2","n3","n5","n5a","n8","n9","n9a","n11","n12a")
metscale<-c("ratio","interval")
metdist<-c("euclidean","manhattan","maximum","seuclidean","GDM1")
data(data_lower_silesian)
res<-optSmacofSym_mMDS(data_lower_silesian,normalizations=metnor,
distances=metdist,mdsmodels=metscale,outDec=".")
print(findOptimalSmacofSym(res))
# }
Run the code above in your browser using DataLab