Learn R Programming

⚠️There's a newer version (1.0.0) of this package.Take me there.

The mecor Package

This package for R implements measurement error correction methods for measurement error in a continuous covariate or outcome in a linear model with a continuous outcome.

Installation

The package can be installed via

devtools::install_github("LindaNab/mecor", build_vignettes = TRUE)

Quick demo

library(mecor)
# load the internal covariate validation study
data("icvs", package = "mecor")
head(icvs)
# correct the biased exposure-outcome association
mecor(Y ~ MeasError(X_star, reference = X) + Z, data = icvs, method = "standard")

More examples

Browse the vignettes of the package for more information.

browseVignettes(package = "mecor")

References

Key reference

  • Nab L, van Smeden M, Keogh RH, Groenwold RHH. mecor: an R package for measurement error correction in linear models with a continuous outcome.

References to methods implemented in the package

  • Bartlett JW, Stavola DBL, Frost C. Linear mixed models for replication data to efficiently allow for covariate measurement error. Statistics in Medicine. 2009:28(25):3158–3178. doi:10.1002/sim.3713

  • Buonaccorsi JP. Measurement error: Models, methods, and applications. 2010. Chapman & Hall/CRC, Boca Raton.

  • Carroll RJ, Ruppert D, Stefanski LA, Crainiceanu CM. Measurement error in non-linear models: A modern perspective. 2006, 2nd edition. Chapman & Hall/CRC, Boca Raton.

  • Keogh RH, Carroll RJ, Tooze JA, Kirkpatrick SI, Freedman LS. Statistical issues related to dietary intake as the response variable in intervention trials. Statistics in Medicine. 2016:35(25):4493–4508. doi:10.1002/sim.7011

  • Keogh RH, White IR. A toolkit for measurement error correction, with a focus on nutritional epidemiology. Statistics in Medicine 2014:33(12):2137–2155. doi:10.1002/sim.6095

  • Nab L, Groenwold RHH, Welsing PMJ, van Smeden M. Measurement error in continuous endpoints in randomised trials: Problems and solutions. Statistics in Medicine. 2019:38(27):5182-5196. doi:10.1002/sim.8359

  • Rosner B, Spiegelman D, Willett WC. Correction of logistic regression relative risk estimates and confidence intervals for measurement error: The case of multiple covariates measured with error. 1990:132(4):734-745. doi:10.1093/oxfordjournals.aje.a115715

  • Rosner B, Spiegelman D, Willett WC. Correction of logistic regression relative risk estimates and confidence intervals for random within-person measurement error. American Journal of Epidemiology. 1992:136(11):1400-1413. doi:10.1093/oxfordjournals.aje.a116453

  • Spiegelman D, Carroll RJ, Kipnis V. Efficient regression calibration for logistic regression in main study/internal validation study designs with an imperfect reference instrument. Statistics in Medicine. 2001:20(1):139-160. doi:10.1002/1097-0258(20010115)20:1<139::AID-SIM644>3.0.CO;2-K

Copy Link

Version

Install

install.packages('mecor')

Monthly Downloads

206

Version

0.9.0

License

GPL-3

Issues

Pull Requests

Stars

Forks

Maintainer

Linda Nab

Last Published

January 14th, 2021

Functions in mecor (0.9.0)

iovs_diff

Internal Outcome Validation Study
MeasError

Create a Measurement Error Object
MeasErrorRandom

Create a Random Measurement Error Object
ipwm

Weighting for Confounding and Joint Misclassification of Exposure and Outcome
iovs

Internal Outcome-Validation Study
ecvs

External Covariate-Validation Study
eovs

External Outcome-Validation Study
icvs

Internal Covariate-Validation Study
mecor

mecor: a Measurement Error Correction Package
ccs

Covariate-Calibration Study
sim

MeasErrorExt

Create an External Measurement Error Object
rs

Replicates Study
summary.mecor

Summarizing Measurement Error Correction