This function computes the negative log-posterior distribution of the Bayesian hierarchical model described in Myers et al (2011). It is a helper function and not meant to be used on its own.
logp(theta, deltaj, sigma2, i, k, eta, dat)
logp
returns a vector of log-posterior values.
value of the error profile random effect at which the log.posterior distribution is calculated.
vector of hospital random effect values.
scale parameter (\(> 0\)).
error profile index for which the calculate of the log.posterior distribution is needed.
degrees of freedom (\(> 0\), maybe non-integer). df = Inf
is allowed.
skewness parameter (\(> 0\)).
an object of class "mederrData".
Sergio Venturini sergio.venturini@unicatt.it,
Jessica A. Myers jmyers6@partners.org
For further details see Myers et al. (2011).
Myers, J. A., Venturini, S., Dominici, F. and Morlock, L. (2011), "Random Effects Models for Identifying the Most Harmful Medication Errors in a Large, Voluntary Reporting Database". Technical Report.
bhm.constr.resamp
,
bhm.mcmc
,
bhm.resample
.