#For a one-level random intercept model
require(lme4)
m1 <- lmer(Reaction ~ Days + (1 | Subject), sleepstudy)
(m1.er <- REimpact(m1, newdata = sleepstudy[1, ], breaks = 2))
#For a one-level random intercept model with multiple random terms
m2 <- lmer(Reaction ~ Days + (Days | Subject), sleepstudy)
#ranked by the random slope on Days
(m2.er1 <- REimpact(m2, newdata = sleepstudy[1, ],
groupFctr = "Subject", term="Days"))
#ranked by the random intercept
(m2.er2 <- REimpact(m2, newdata = sleepstudy[1, ],
groupFctr = "Subject", term="int"))
## Not run:
# # You can also pass additional arguments to predictInterval through REimpact
# g1 <- lmer(y ~ lectage + studage + (1|d) + (1|s), data=InstEval)
# zed <- REimpact(g1, newdata = InstEval[9:12, ], groupFctr = "d", n.sims = 50,
# include.resid.var = TRUE)
# zed2 <- REimpact(g1, newdata = InstEval[9:12, ], groupFctr = "s", n.sims = 50,
# include.resid.var = TRUE)
# zed3 <- REimpact(g1, newdata = InstEval[9:12, ], groupFctr = "d", breaks = 5,
# ## End(Not run)
Run the code above in your browser using DataLab