
bubble(x, ...)
"bubble"(x, xlim, ylim, xlab, ylab, cex, min.cex=0.5, max.cex=5, pch=21, col="black", bg="darkgray", lty=1, lwd=1, col.line="black", studlab=FALSE, cex.studlab=0.8, pos=2, offset=0.5, regline=TRUE, axes=TRUE, box=TRUE, ...)
metareg
.pch
in 21:25
).text
).text
).par
may also be
passed as arguments. Argument cex
specifies the plotting size for each individual
study. If this argument is missing the weights from the
meta-regression model will be used (which typically is a random
effects model). Use weight="fixed"
in order to utilise
weights from a fixed effect model to define the size of the plotted
symbols (even for a random effects meta-regression). If a vector
with individual study weights is provided, the length of this vector
must be of the same length as the number of studies.
Arguments min.cex
and max.cex
can be used to define
the size of the smallest and largest plotting symbol. The plotting
size of the most precise study is set to max.cex
whereas the
plotting size of all studies with a plotting size smaller than
min.cex
will be set to min.cex
.
For a meta-regression with more than one covariate. Only a scatter plot of the first covariate in the regression model is shown. In this case the effect of the first covariate adjusted for other covariates in the meta-regression model is shown.
For a factor or categorial covariate separate bubble plots for each group compared to the baseline group are plotted.
metagen
, metainf
data(Fleiss93cont)
# Add some (fictious) grouping variables:
Fleiss93cont$age <- c(55, 65, 52, 65, 58)
Fleiss93cont$region <- c("Europe", "Europe", "Asia", "Asia", "Europe")
meta1 <- metacont(n.e, mean.e, sd.e,
n.c, mean.c, sd.c,
data=Fleiss93cont, sm="MD")
mr1 <- metareg(meta1, region)
mr1
bubble(mr1)
bubble(mr1, lwd=2, col.line="blue")
mr2 <- metareg(meta1, age)
mr2
bubble(mr2, lwd=2, col.line="blue", xlim=c(50, 70))
bubble(mr2, lwd=2, col.line="blue", xlim=c(50, 70), cex="fixed")
# Do not print regression line
#
bubble(mr2, lwd=2, col.line="blue", xlim=c(50, 70), regline=FALSE)
Run the code above in your browser using DataLab