Learn R Programming

meta (version 8.1-0)

print.metainf: Print results of a leave-one-out meta-analysis

Description

Print results of a leave-one-out meta-analysis

Usage

# S3 method for metainf
print(
  x,
  prediction = x$prediction,
  overall = x$overall,
  backtransf = x$backtransf,
  header = TRUE,
  lab.NA = ".",
  digits = gs("digits"),
  digits.stat = gs("digits.stat"),
  digits.pval = gs("digits.pval"),
  digits.tau2 = gs("digits.tau2"),
  digits.tau = gs("digits.tau"),
  digits.I2 = gs("digits.I2"),
  digits.cid = gs("digits.cid"),
  digits.percent = 1,
  big.mark = gs("big.mark"),
  scientific.pval = gs("scientific.pval"),
  zero.pval = gs("zero.pval"),
  JAMA.pval = gs("JAMA.pval"),
  print.stat = FALSE,
  print.tau2 = TRUE,
  print.tau2.ci = FALSE,
  print.tau = TRUE,
  print.tau.ci = FALSE,
  print.I2 = TRUE,
  print.I2.ci = FALSE,
  print.prob = TRUE,
  text.tau2 = gs("text.tau2"),
  text.tau = gs("text.tau"),
  text.I2 = gs("text.I2"),
  details.methods = gs("details"),
  ...
)

Arguments

x

An object of class metainf.

prediction

A logical indicating whether prediction intervals should be printed.

overall

A logical indicating whether overall results should be printed.

backtransf

A logical indicating whether printed results should be back transformed. If backtransf=TRUE, results for sm="OR" are printed as odds ratios rather than log odds ratios, for example.

header

A logical indicating whether information on title of meta-analysis, comparison and outcome should be printed at the beginning of the printout.

lab.NA

A character string to label missing values.

digits

Minimal number of significant digits, see print.default.

digits.stat

Minimal number of significant digits for z- or t-value of test for overall effect, see print.default.

digits.pval

Minimal number of significant digits for p-value of overall treatment effect, see print.default.

digits.tau2

Minimal number of significant digits for between-study variance \(\tau^2\), see print.default.

digits.tau

Minimal number of significant digits for \(\tau\), the square root of the between-study variance \(\tau^2\).

digits.I2

Minimal number of significant digits for I-squared and Rb statistic, see print.default.

digits.cid

Minimal number of significant digits for CID / decision thresholds, see print.default.

digits.percent

Minimal number of significant digits for probabilities, printed as percentages, see print.default.

big.mark

A character used as thousands separator.

scientific.pval

A logical specifying whether p-values should be printed in scientific notation, e.g., 1.2345e-01 instead of 0.12345.

zero.pval

A logical specifying whether p-values should be printed with a leading zero.

JAMA.pval

A logical specifying whether p-values for test of overall effect should be printed according to JAMA reporting standards.

print.stat

A logical value indicating whether z- or t-value for test of treatment effect should be printed.

print.tau2

A logical specifying whether between-study variance \(\tau^2\) should be printed.

print.tau2.ci

A logical value indicating whether to print the confidence interval of \(\tau^2\).

print.tau

A logical specifying whether \(\tau\), the square root of the between-study variance \(\tau^2\), should be printed.

print.tau.ci

A logical value indicating whether to print the confidence interval of \(\tau\).

print.I2

A logical specifying whether heterogeneity statistic I\(^2\) should be printed.

print.I2.ci

A logical specifying whether confidence interval for heterogeneity statistic I\(^2\) should be printed.

print.prob

A logical specifying whether to print probabilities of clinically important benefit or harm.

text.tau2

Text printed to identify between-study variance \(\tau^2\).

text.tau

Text printed to identify \(\tau\), the square root of the between-study variance \(\tau^2\).

text.I2

Text printed to identify heterogeneity statistic I\(^2\).

details.methods

A logical specifying whether details on statistical methods should be printed.

...

Additional arguments (ignored).

See Also

metainf, settings.meta

Examples

Run this code
data(Fleiss1993bin)
m1 <- metabin(d.asp, n.asp, d.plac, n.plac,
  data = Fleiss1993bin, studlab = study, sm = "RR", method = "I")
m1
metainf(m1)
metainf(m1, pooled = "random")
metainf(m1, pooled = "random", prediction = TRUE)

Run the code above in your browser using DataLab