## Not run:
# data(Aloe14)
#
# ## Random-effects meta-analysis
# meta1 <- meta(cbind(EE,DP,PA), cbind(V_EE, C_EE_DP, C_EE_PA, V_DP, C_DP_PA, V_PA),
# data=Aloe14)
# summary(meta1)
#
# ## Extract the coefficients for the variance component of the random effects
# coef1 <- coef(meta1, select="random")
#
# ## Convert it into a symmetrix matrix by row major
# my.cov <- vec2symMat(coef1, byrow=TRUE)
#
# ## Convert it into a correlation matrix
# cov2cor(my.cov)
#
# ## Plot the multivariate effect sizes
# plot(meta1)
# ## End(Not run)
Run the code above in your browser using DataLab